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Leonhard Euler’s book Institutiones Calculi Differentialis (Foundations
of Differential Calculus) was published in two parts in 1755 [2, series I, vol.
10], and translated into German in 1790 [3]. There is an English translation
of part 1 [4], but not part 2, of the Institutiones.

Euler was entranced by infinite series, and a wizard at working with them.
A lot of the book is actually devoted to the relationship between differential
calculus and infinite series, and in this respect it differs considerably from
today’s calculus books. In chapters 5 and 6 of part 2 Euler presents his way
of finding sums of series, both finite and infinite, via his discovery of the
Euler-Maclaurin summation formula.

Here we present translated excerpts from these two chapters of part 2,
featuring aspects of Euler’s development and applications of his summation
formula. The English translation has been made primarily from the German
translation of 1790 [3], with some assistance from Daniel Otero in comparing
the resulting English with the Latin original. The excerpts include those in
a forthcoming book of annotated original sources, within a chapter on The
Bridge Between the Continuous and Discrete. The book chapter follows
this theme via sources by Archimedes, Fermat, Pascal, Bernoulli and Euler.
For more information see http://math.nmsu.edu/~history. In the spirit
of providing pure uninterpreted translation, we have here removed all our
annotation and commentary, which along with extensive exercises can be
found in the book chapter. The version with annotation and exercises may
be provided at this site at a later time. The only commentary that remains
here summarizes some of those portions of Chapters 5 and 6 that were not
translated.

In excerpts from chapter 5 we see Euler derive his summation formula,
analyze the nature of its Bernoulli numbers in connection with trigonometric
functions, find the precise sums of infinite series of reciprocal even powers,
and prove Bernoulli’s sums of powers formulas. From chapter 6 we see three
diverse applications of the summation formula, each revealing a fundamen-
tally different way of using it. We first see Euler approximate large partial
sums of the slowly diverging harmonic series

∑∞
i=1

1
i , which involves approx-

imating the now famous “Euler constant”. Then we see how in the early
1730’s Euler approximated the infinite sum of reciprocal squares to great
precision without knowledge of the infinite sum itself. Finally Euler goes on
to use the summation formula to study sums of logarithms, from which he
obtains incredibly impressive formulas and approximations for large facto-
rials (Stirling’s series), and thence for binomial coefficients, using Wallis’s
formula for π to determine the unknown constant in his summation formula.
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Leonhard Euler, from
Foundations of Differential Calculus

Part Two, Chapter 5
On Finding Sums of Series from the General Term

103. Suppose y is the general term of a series, belonging to the index x,
and thus y is any function of x. Further, suppose Sy is the summative term of
this series, expressing the aggregate of all terms from the first or another fixed
term up to y, inclusive. The sums of the series are calculated from the first
term, so that if x = 1, y is the first term, and likewise Sy yields this first term;
alternatively, if x = 0, the summative term Sy vanishes, because no terms are
being summed. With these stipulations, the summative term Sy is a function
of x that vanishes if one sets x = 0.

[...]

105. Consider a series whose general term, belonging to the index x, is y,
and whose preceding term, with index x−1, is v; because v arises from y, when
x is replaced by x− 1, one has

v = y − dy

dx
+

ddy

2dx2
− d3y

6dx3
+

d4y

24dx4
− d5y

120dx5
+ etc.

If y is the general term of the series

1 2 3 4 · · · x− 1 x
a + b + c + d + · · · + v + y

and if the term belonging to the index 0 is A, then v, as a function of x, is the
general term of the series

1 2 3 4 5 · · · x
A + a + b + c + d + · · · + v ,

so if Sv denotes the sum of this series, then Sv = Sy − y + A. If one sets
x = 0, then Sy = 0 and y = A, so Sv vanishes.

106. Because

v = y − dy

dx
+

ddy

2dx2
− d3y

6dx3
+ etc.,

one has, from the preceding,

Sv = Sy − S
dy

dx
+ S

ddy

2dx2
− S

d3y

6dx3
+ S

d4y

24dx4
− etc.,

and, because Sv = Sy − y + A,

y −A = S
dy

dx
− S

ddy

2dx2
+ S

d3y

6dx3
− S

d4y

24dx4
+ etc.,

or equivalently

S
dy

dx
= y −A + S

ddy

2dx2
− S

d3y

6dx3
+ S

d4y

24dx4
− etc.
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Thus if one knows the sums of the series, whose general terms are ddy
dx2 , d3y

dx3 , d4y
dx4 ,

etc., one can obtain the summative term of the series whose general term is dy
dx .

The constant A must then be such that the summative term S dy
dx disappears

when x = 0, and this condition makes it easier to determine, than saying that
it is the term belonging to the index 0 in the series whose general term is y.

In §107/108 Euler illustrates the practical application of this equation by
choosing to use the power function y = xn+1/(n+1). This has the advantage
that the derivatives in the equation are just lower power functions, so that
the sums are all sums of powers, and then vanish after some point in the
equation, so he obtains a finite expression for Sxn (i.e., for

∑x
i=1 in). He

applies this inductively from n = 0 upwards to calculate the closed formulae
for sums of powers of the natural numbers explicitly up through the sum of
fourth powers.

[...]

109. Since from the above one has

S
dy

dx
= y [−A] +

1
2
S

ddy

dx2
− 1

6
S

d3y

dx3
+

1
24

S
d4y

dx4
− 1

120
S

d5y

dx5
+ etc.,

if one sets dy
dx = z, then ddy

dx2 = dz
dx , d3y

dx3 = ddz
dx2 , etc. And because dy = zdx, y will

be a quantity whose differential is zdx, and this one writes as y =
∫

zdx. Now
the determination of the quantity y from z according to this formula assumes
the integral calculus; but we can nevertheless make use of this expression

∫
zdx,

if for z we use no function other than that whose differential is zdx from above.
Thus substituting these values yields

Sz =
∫

zdx +
1
2
S

dz

dx
− 1

6
S

ddz

dx2
+

1
24

S
d3z

dx3
− etc.,

adding to it a constant value such that when x = 0, the sum Sz also vanishes.

110. But if in the expressions above one substitutes the letter z in place of
y, or if one differentiates the preceding equation, which yields the same, one
obtains

S
dz

dx
= z +

1
2
S

ddz

dx2
− 1

6
S

d3z

dx3
+

1
24

S
d4z

dx4
− etc.;

but using dz
dx in place of y one obtains

S
ddz

dx2
=

dz

dx
+

1
2
S

d3z

dx3
− 1

6
S

d4z

dx4
+

1
24

S
d5z

dx5
− etc.

Similarly replacing y successively by the values ddz
dx2 , d3z

dx3 etc., produces

S
d3z

dx3
=

ddz

dx2
+

1
2
S

d4z

dx4
− 1

6
S

d5z

dx5
+

1
24

S
d6z

dx6
− etc.,

S
d4z

dx4
=

d3z

dx3
+

1
2
S

d5z

dx5
− 1

6
S

d6z

dx6
+

1
24

S
d7z

dx7
− etc.,

and so forth indefinitely.
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111. Now when these values for S dz
dx , S ddz

dx2 , S d3z
dx3 are successively substituted

in the expression

Sz =
∫

zdx +
1
2
S

dz

dx
− 1

6
S

ddz

dx2
+

1
24

S
d3z

dx3
− etc.,

one finds an expression for Sz, composed of the terms
∫

zdx, z, dz
dx , ddz

dx2 , d3z
dx3

etc., whose coefficients are easily obtained as follows. One sets

Sz =
∫

zdx + αz +
βdz

dx
+

γddz

dx2
+

δd3z

dx3
+

εd4z

dx4
+ etc.,

and substitutes for these terms the values they have from the previous series,
yielding

∫
zdx = Sz− 1

2S dz
dx + 1

6S ddz
dx2 − 1

24S d3z
dx3 + 1

120S d4z
dx4 − etc.

αz = + αS dz
dx − α

2 S ddz
dx2 + α

6 S d3z
dx3 − α

24S d4z
dz4 + etc.

βdz
dx = βS ddz

dx2 − β
2 S d3z

dx3 + β
6 S d4z

dx4 − etc.

γddz
dx2 = γS d3z

dx3 − γ
2S d4z

dx4 + etc.

δd3z
dx3 = δ S d4z

dx4 − etc.

etc.

Since these values, added together, must produce Sz, the coefficients α, β, γ,
δ etc. are defined by the sequence of equations

α− 1
2

= 0, β − α

2
+

1
6

= 0, γ − β

2
+

α

6
− 1

24
= 0,

δ − γ

2
+

β

6
− α

24
+

1
120

= 0, ε− δ

2
+

γ

6
− β

24
+

α

120
− 1

720
= 0,

ζ − ε

2
+

δ

6
− γ

24
+

β

120
− α

720
+

1
5040

= 0 etc.

112. So from these equations the successive values of all the letters α, β, γ,
δ etc. are defined; they are

α =
1
2
, β =

α

2
− 1

6
=

1
12

, γ =
β

2
− α

6
+

1
24

= 0,

δ =
γ

2
− β

6
+

α

24
− 1

120
= − 1

720
, ε =

δ

2
− γ

6
+

β

24
− α

120
+

1
720

= 0 etc.,

and if one continues in this fashion one finds that alternating terms vanish. The
third, fifth, seventh letters, and so on, in fact all odd terms except the first, are
zero, so that this series appears to contradict the law of continuity by which the
terms proceed. A rigorous proof is especially needed that all odd terms except
the first vanish.
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113. Because the letters are determined from the preceding by a constant
law, they form a recurrent series. In order to develop this, consider the series

1 + αu + βu2 + γu3 + δu4 + εu5 + ζu6 + etc.,

and set its value = V , so it is clear that this recurrent series arises from the
development of the fraction

V =
1

1− 1
2u + 1

6u2 − 1
24u3 + 1

120u4 − etc.

And when this fraction is resolved in a different way in an infinite series according
to the powers of u, then necessarily the same series

V = 1 + αu + βu2 + γu3 + δu4 + εu5 + etc.

will always result. In this fashion a different rule for determining the letters α,
β, γ, δ etc. results.

114. Because one has

e−u = 1− u +
1
2
u2 − 1

6
u3 +

1
24

u4 − 1
120

u5 + etc.,

where e denotes the number whose hyperbolic logarithm is one, then

1− e−u

u
= 1− 1

2
u +

1
6
u2 − 1

24
u3 +

1
120

u4 − etc.,

and thus

V =
u

1− e−u
.

Now one removes from this series the second term αu = 1
2u, so that

V − 1
2
u = 1 + βu2 + γu3 + δu4 + εu5 + ζu6 + etc.;

whence

V − 1
2
u =

1
2u (1 + e−u)

1− e−u
.

Multiplying numerator and denominator by e
1
2
u yields

V − 1
2
u =

u
(
e

1
2
u + e−

1
2
u
)

2
(
e

1
2
u − e−

1
2
u
) ,

and converting the quantities e
1
2
u and e−

1
2
u into series gives

V − 1
2
u =

1 + u2

2·4 + u4

2·4·6·8 + u6

2·4·6·8·10·12 + etc.

2
(

1
2 + u2

2·4·6 + u4

2·4·6·8·10 + etc.
)

or

V − 1
2
u =

1 + u2

2·4 + u4

2·4·6·8 + u6

2·4···12 + u8

2·4···16 + etc.

1 + u2

4·6 + u4

4·6·8·10 + u6

4·6···14 + u8

4·6···18 + etc.
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115. Since no odd powers occur in this fraction, likewise none can occur in
its expansion; because V − 1

2u equals the series

1 + βu2 + γu3 + δu4 + εu5 + ζu6 + etc.,

the coefficients of the odd powers γ, ε, η, ι etc. all vanish. And so it is
clear why the even-ordered terms after the second all equal zero in the series
1 + αu + βu2 + γu3 + δu4+ etc., for otherwise the law of continuity would be
violated. Thus

V = 1 +
1
2
u + βu2 + δu4 + ζu6 + θu8 + κu10 + etc.,

and if the letters β, δ, ζ, θ, κ have been determined by the development of the
above fraction, one obtains the summative term Sz of the series, whose general
term = z corresponds to the index x, expressed as

Sz =
∫

zdx +
1
2
z +

βdz

dx
+

δd3z

dx3
+

ζd5z

dx5
+

θd7z

dx7
+ etc.

116. Since the series 1 + βu2 + δu4 + ζu6 + θu8+ etc. arises by developing
the fraction

1 + u2

2·4 + u4

2·4·6·8 + u6

2·4·6·8·10·12 + etc.

1 + u2

4·6 + u4

4·6·8·10 + u6

4·6·8·10·12·14 + etc.
,

the letters β, δ, ζ, θ, x will follow according to the rule, as

β = 1
2·4 − 1

4·6
δ = 1

2·4·6·8 − β
4·6 − 1

4·6·8·10

ζ = 1
2·4·6···12 − δ

4·6 − β
4·6·8·10 − 1

4·6···14

θ = 1
2·4·6···16 − ζ

4·6 − δ
4·6·8·10 − β

4·6···14 − 1
4·6···18

etc.

But these values are alternatingly positive and negative.

117. If the letters are alternatingly taken negatively, so that

Sz =
∫

zdx +
1
2
z − βdz

dx
+

δd3z

dx3
− ζd5z

dx5
+

θd7z

dx7
− etc.,

then the letters β, δ, ζ, θ, etc. are determined by the fraction

1− u2

2·4 + u4

2·4·6·8 − u6

2·4···12 + u8

2·4···16 − etc.

1− u2

4·6 + u4

4·6·8·10 − u6

4·6···14 + u8

4·6···18 − etc.
,

when one develops it to the series

1 + βu2 + δu4 + ζu6 + θu8 + etc.
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From this one has

β =
1

4 · 6 −
1

2 · 4
δ =

β

4 · 6 −
1

4 · 6 · 8 · 10
+

1
2 · 4 · 6 · 8

ζ =
δ

4 · 6 −
β

4 · 6 · 8 · 10
+

1
4 · 6 · · · 14

− 1
2 · 4 · · · 12

etc.;

only here all terms are negative.

118. Thus we consider β = −A; δ = −B; ζ = −C, etc.; consequently

Sz =
∫

zdx +
1
2
z +

Adz

dx
− Bd3z

dx3
+

Cd5z

dx5
− Dd7z

dx7
+ etc.,

and in order to determine the letters A, B, C, D etc., we consider the series

1−Au2 −Bu4 − Cu6 −Du8 −Eu10 − etc.,

which arises from the development of the fraction

1− u2

2·4 + u4

2·4·6·8 − u6

2·4···12 + u8

2·4···16 − etc.

1− u2

4·6 + u4

4·6·8·10 − u6

4·6···14 + u8

4·6···18 − etc.
,

or consider the series
1
u
−Au−Bu3 − Cu5 −Du7 −Eu9 − etc. = s,

which arises from the development of the fraction

s =
1− u2

2·4 + u4

2·4·6·8 − u6

2·4···12 + etc.

u− u3

4·6 + u5

4·6·8·10 − u7

4·6···14 + etc.
.

But since

cos
1
2
u = 1− u2

2 · 4 +
u4

2 · 4 · 6 · 8 −
u6

2 · 4 · · · 12
+ etc.,

sin
1
2
u =

u

2
− u3

2 · 4 · 6 +
u5

2 · 4 · 6 · 8 · 10
− u7

2 · 4 · · · 14
+ etc.,

we have

s =
cos 1

2u

2 sin 1
2u

=
1
2

cot
1
2
u.

Thus if one converts the cotangent of the arc 1
2u into a series, according to the

powers of u, the values of the letters A, B, C, D, E, etc. are revealed.

119. Because s = 1
2 cot 1

2u, one has 1
2u = A. cot 2s, and if one differentiates,

then 1
2du = −2ds

1+4ss , or 4ds + du + 4ssdu = 0, or

4ds

du
+ 1 + 4ss = 0.
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But since

s =
1
u
−Au−Bu3 − Cu5 − etc.,

one has

4ds
du =− 4

uu − 4A− 3 · 4Bu2− 5 · 4Cu4− 7 · 4Du6− etc.

1 = 1

4ss = 4
uu − 8A− 8Bu2− 8Cu4− 8Du6− etc.

+ 4A2u2 + 8ABu4 + 8ACu6 + etc.

+ 4BBu6 + etc.

Setting the homogeneous terms to zero, one obtains

A =
1
12

, B =
A2

5
, C =

2AB

7
, D =

2AC + BB

9
, E =

2AD + 2BC

11
,

F =
2AE + 2BD + CC

13
, G =

2AF + 2BE + 2CD

15
,

H =
2AG + 2BF + 2CE + DD

17
, etc.

From these formulas it is very clearly apparent that each of these values is
positive .

120. But because the denominators of these fractions become very large, and
substantially impede calculation, we want instead of the letters A, B, C, D,
etc. to introduce new ones1:

A =
α

1 · 2 · 3 , B =
β

1 · 2 · 3 · 4 · 5 , C =
γ

1 · 2 · 3 · · · 7 ,

D =
δ

1 · 2 · 3 · · · 9, E =
ε

1 · 2 · 3 · · · 11
, etc.

1Translator’s note: Caution! These new symbols α, β, ... are completely different
from the α, β, ... used earlier.
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Then one finds

α =
1
2
, β =

2
3
α2, γ = 2 · 3

3
αβ, δ = 2 · 4

3
αγ +

8 · 7
4 · 5β2,

ε = 2 · 5
3
αδ + 2 · 10 · 9 · 8

1 · 2 · · · 5βγ,

ζ = 2 · 12
1 · 2 · 3αε + 2 · 12 · 11 · 10

1 · 2 · · · 5 βδ +
12 · 11 · 10 · 9 · 8

1 · 2 · · · 7 γγ,

η = 2 · 14
1 · 2 · 3αζ + 2 · 14 · 13 · 12

1 · 2 · · · 5 βε + 2 · 14 · 13 · 12 · 11 · 10
1 · 2 · · · 7 γδ, etc.

121. But it is more convenient to make use of the formulas

α =
1
2
, β =

4
3
· αα

2
, γ =

6
3
· αβ, δ =

8
3
· αγ +

8 · 7 · 6
3 · 4 · 5 ·

ββ

2
,

ε =
10
3
· αδ +

10 · 9 · 8
3 · 4 · 5 · βγ, ζ =

12
3
· αε +

12 · 11 · 10
3 · 4 · 5 · βδ +

12 · 11 · 10 · 9 · 8
3 · 4 · 5 · 6 · 7 · γγ

2
,

η =
14
3
· αζ +

14 · 13 · 12
3 · 4 · 5 · βε +

14 · 13 · 12 · 11 · 10
3 · 4 · 5 · 6 · 7 · γδ,

θ =
16
3
· αη +

16 · 15 · 14
3 · 4 · 5 · βζ +

16 · 15 · · · 12
3 · 4 · · · 7 · γε +

16 · 15 · · · 10
3 · 4 · · · 9 · δδ

2

etc.

If one finds the values of the letters α, β, γ, δ, etc. according to this rule,
which entails little difficulty in calculation, then one can express the summative
term of any series, whose general term = z corresponding to the index x, in the
following fashion:

Sz =
∫

zdx +
1
2
z +

αdz

1 · 2 · 3 · dx
− βd3z

1 · 2 · 3 · 4 · 5dx3
+

γd5z

1 · 2 · · · 7dx5

− δd7z

1 · 2 · · · 9dx7
+

εd9z

1 · 2 · · · 11dx9
− ζd11z

1 · 2 · · · 13dx11
+ etc.
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As far as the letters α, β, γ, δ, etc. are concerned, one finds the following
values:

α = 1
2 or 1 · 2α = 1

β = 1
6 1 · 2 · 3β = 1

γ = 1
6 1 · 2 · 3 · 4γ = 4

δ = 3
10 1 · 2 · 3 · · · 5δ = 36

ε = 5
6 1 · 2 · 3 · · · 6ε = 600

ζ = 691
210 1 · 2 · 3 · · · 7ζ = 24 · 691

η = 35
2 1 · 2 · 3 · · · 8η = 20160 · 35

θ = 3617
30 1 · 2 · 3 · · · 9θ = 12096 · 3617

ι = 43867
42 1 · 2 · 3 · · · 10ι = 86400 · 43867

κ = 1222277
110 1 · 2 · 3 · · · 11κ = 362880 · 1222277

λ = 854513
6 1 · 2 · 3 · · · 12λ = 79833600 · 854513

µ = 1181820455
546 1 · 2 · 3 · · · 13µ = 11404800 · 1181820455

ν = 76977927
2 1 · 2 · 3 · · · 14ν = 43589145600 · 76977927

ξ = 23749461029
30 1 · 2 · 3 · · · 15ξ = 43589145600 · 23749461029

π = 8615841276005
462 1 · 2 · 3 · · · 16π = 45287424000 · 8615841276005

etc.

122. These numbers have great use throughout the entire theory of series.
First, one can obtain from them the final terms in the sums of even powers,
for which we noted above (in §63 of part one) that one cannot obtain them, as
one can the other terms, from the sums of earlier powers. For the even powers,
the last terms of the sums are products of x and certain numbers, namely for
the 2nd, 4th, 6th, 8th, etc., 1

6 , 1
30 , 1

42 , 1
30 etc. with alternating signs. But

these numbers arise from the values of the letters α, β, γ, δ, etc., which we
found earlier, when one divides them by the odd numbers 3, 5, 7, 9, etc. These
numbers are called the Bernoulli numbers after their discoverer Jakob Bernoulli,
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and they are
α
3 = 1

6 = A ι
19 = 43867

798 = I

β
5 = 1

30 = B {
21 = 174611

330 = K = 283·617
330

γ
7 = 1

42 = C λ
23 = 854513

138 = L = 11·131·593
2·3·23

δ
9 = 1

30 = D µ
25 = 236364091

2730 = M

ε
11 = 5

66 = E ν
27 = 8553103

6 = N = 13·657931
6

ζ
13 = 691

2730 = F ξ
29 = 23749461029

870 = O

η
15 = 7

6 = G π
31 = 8615841276005

14322 = P

θ
17 = 3617

510 = H etc.

123. Thus one immediately obtains the Bernoulli numbers A, B, C etc. from
the following equations:

A = 1
6

B = 4·3
1·2 · 1

5 A2

C = 6·5
1·2 · 2

7 AB

D = 8·7
1·2 · 2

9 AC + 8·7·6·5
1·2·3·4 · 1

9B2

E = 10·9
1·2 · 2

11 AD + 10·9·8·7
1·2·3·4 · 2

11BC

F = 12·11
1·2 · 2

13 AE + 12·11·10·9
1·2·3·4 · 2

13BD + 12·11·10·9·8·7
1·2·3·4·5·6 · 1

13 C2

G = 14·13
1·2 · 2

15 AF + 14·13·12·11
1·2·3·4 · 2

15BE + 14·13·12·11·10·9
1·2·3·4·5·6 · 2

15 CD

etc.,

and the law of these equations is clear if one notes that whenever the square of
a letter appears, its coefficient is only half as large as it would appear according
to the rule. But actually one should view the terms containing products of
different letters as occurring twice. So for example

13F =
12 · 11
1 · 2 AE +

12 · 11 · 10 · 9
1 · 2 · 3 · 4 BD +

12 · 11 · 10 · 9 · 8 · 7
1 · 2 · 3 · 4 · 5 · 6 CC

+
12 · 11 · 10 · · · 5

1 · 2 · 3 · · · 8 DB +
12 · 11 · 10 · · · 3
1 · 2 · 3 · · · 10

EA.

124. Next, the numbers α, β, γ, δ etc. are also ingredients in the expressions
for the sums of the series of fractions comprised by the general formula

1 +
1
2n

+
1
3n

+
1
4n

+
1
5n

+
1
6n

+ etc.,

when n is a positive even number. We expressed the sums of these series in
the Introductio2 via powers of the semiperiphery π of the circle of radius = 1,
and there one encounters the numbers α, β, γ, δ, etc. in the coefficients of

2Introductio, Book I, chapter 10.
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these powers. But because these do not appear to occur by accident, rather
their necessity is apparent, we wish to investigate these sums in a special way,
by which the truth of the law of these sums will be clear. Because from above
(§43) one has

π

n
cot

m

n
π =

1
m
− 1

n−m
+

1
n + m

− 1
2n−m

+
1

2n + m
− 1

3n−m
+ etc.,

combining terms in pairs one has,

π

n
cot

m

n
π =

1
m
− 2m

nn−m2
− 2m

4n2 −m2
− 2m

9n2 −m2
− 2m

16n2 −m2
− etc.,

and from this

1
n2 −m2

+
1

4n2 −m2
+

1
9n2 −m2

+
1

16n2 −m2
+ etc. =

1
2mm

− π

2mn
cot

m

n
π.

Now we set n = 1 and replace m by u, yielding

1
1− u2

+
1

4− u2
+

1
9− u2

+
1

16− u2
+ etc. =

1
2uu

− π

2u
cotπu.

Resolving these fractions in series, one obtains

1
1−u2 = 1 + u2 + u4 + u6 + u8 + etc.

1
4−u2 = 1

22 + u2

24 + u4

26 + u6

28 + u8

210 + etc.

1
9−u2 = 1

32 + u2

34 + u4

36 + u6

38 + u8

310 + etc.

1
16−u2 = 1

42 + u2

44 + u4

46 + u6

48 + u8

410 + etc.

125. If we thus set

1 + 1
22 + 1

32 + 1
42 + etc. = a 1 + 1

28 + 1
38 + 1

48 + etc. = d

1 + 1
24 + 1

34 + 1
44 + etc. = b 1 + 1

210 + 1
310 + 1

410 + etc. = e

1 + 1
26 + 1

36 + 1
46 + etc. = c 1 + 1

212 + 1
312 + 1

412 + etc. = f

etc.,

then the series above is transformed into

a + bu2 + cu4 + du6 + eu8 + fu10 + etc. =
1

2uu
− π

2u
cotπu.

Now in §118 we found that for the letters A, B, C, D etc., when one sets

s =
1
u
−Au−Bu3 − Cu5 −Du7 − Eu9 − etc.
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one has s = 1
2 cot 1

2u, and thus, when one replaces 1
2u by πu, or u by 2πu, one

obtains
1
2

cotπu =
1

2πu
− 2Aπu− 23Bπ3u3 − 25Cπ5u5 − 27Dπ7u7 − etc.,

and multiplying by π
u yields

π

2u
cotπu =

1
2uu

− 2Aπ2 − 23Bπ4u2 − 25Cπ6u4 − 27Dπ8u6 − etc.,

from which follows
1

2uu
− π

2u
cotπu = 2Aπ2 + 23Bπ4u2 + 25Cπ6u4 + 27Dπ8u6 + etc.

Since we already found that

1
2uu

− π

2u
cotπu = a + bu2 + cu4 + du6 + etc.,

it necessarily follows that

a = 2 Aπ2 = 2α
1·2·3 π2 = 2A

1·2 π2

b = 23 Bπ4 = 23β
1·2·3·4·5 π4 = 23B

1·2·3·4 π4

c = 25 Cπ6 = 25γ
1·2·3···7 π6 = 25C

1·2···6 π6

d = 27 Dπ8 = 27δ
1·2·3···9 π8 = 27D

1·2···8 π8

e = 29 Eπ10 = 29ε
1·2·3···11 π10 = 29E

1·2···10 π10

f = 211 Fπ12 = 211ζ
1·2·3···13 π12 = 211F

1·2···12 π12

etc.

[...]

129. From the table of values of the numbers α, β, γ, δ etc. that we
communicated above in §121, it is apparent that they at first decrease, but
then grow without end. Thus it is worth the effort to investigate in what ratio
these numbers continue to grow, after they reach considerable size. So let ϕ be
a number far from the beginning in the sequence α, β, γ, δ, etc., and ψ the one
immediately following. Since the sums of the reciprocal powers are determined
by these numbers, we let 2n be the exponent of the power, in whose sum ϕ
occurs; 2n + 2 will be the exponent of the power corresponding to ψ, and n a
very large number. Then from §125 one has

1 +
1

22n
+

1
32n

+
1

42n
+ etc. =

22n−1ϕ

1 · 2 · 3 · · · (2n + 1)
π2n,

1 +
1

22n+2
+

1
32n+2

+
1

42n+2
+ etc. =

22n+1ψ

1 · 2 · 3 · · · (2n + 3)
π2n+2.

Dividing this series by the former, one finds

1 + 1
22n+2 + 1

32n+2 + etc.

1 + 1
22n + 1

32n + etc.
=

4ψπ2

(2n + 2) (2n + 3)ϕ
.
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But because n is a very large number and both series are very closely = 1,

ψ

ϕ
=

(2n + 2) (2n + 3)
4π2

=
nn

ππ
.

Now n indicates which term the number ϕ is beyond the first number α, and
from this the number ϕ is to the following ψ as π2 is to n2, and this ratio
would, if n were an infinitely large number, be in complete accordance with the
truth. Because ππ nearly = 10, when one lets n = 100, the hundredth term is
approximately 1000 times smaller than the subsequent one. Thus the numbers
α, β, γ, δ etc., and also the Bernoullian A, B, C, D etc., form a highly diverging
sequence, which grows more strongly than any geometric sequence of growing
terms.

130. Thus if one has found the numbers α, β, γ, δ etc., or A, B, C, D
etc., then given a series, whose general term z is a function of its index x, the
summative term Sz can be expressed as follows:

Sz =
∫

zdx +
1
2
z +

1
6
· dz

1 · 2dx
− 1

30
· d3z

1 · 2 · 3 · 4dx3

+
1
42
· d5z

1 · 2 · 3 · · · 6dx5
− 1

30
· d7z

1 · 2 · 3 · · · 8dx7

+
5
66
· d9z

1 · 2 · 3 · · · 10dx9
− 691

2730
· d11z

1 · 2 · 3 · · · 12dx11

+
7
6
· d13z

1 · 2 · 3 · · · 14dx13
− 3617

510
· d15z

1 · 2 · 3 · · · 16dx15

+
43867
798

· d17z

1 · 2 · 3 · · · 18dx17
− 174611

330
· d19z

1 · 2 · 3 · · · 20dx19

+
854513

138
· d21z

1 · 2 · 3 · · · 22dx21
− 236364091

2730
· d23z

1 · 2 · 3 · · · 24dx23

+
8553103

6
· d25z

1 · 2 · 3 · · · 26dx25
− 23749461029

870
· d27z

1 · 2 · 3 · · · 28dx27

+
8615841276005

14322
· d29z

1 · 2 · 3 · · · 30dx29
− etc.

Thus if one knows the integral
∫

zdx, or the quantity, whose differential is
= zdx, one finds the summative term by means of continuing differentiation.
One must not neglect that a constant value must always be added to this
expression, of a nature that the sum will = 0, when x becomes 0.

131. If now z is an integral rational function of x, so that the derivatives
eventually vanish, then the summative term is represented by a finite expression.
We illustrate this by some examples.

First example.
Find the summative term of the following series.
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1 2 3 4 5 x

1 + 9 + 25 + 49 + 81 + · · · + (2x− 1)2

Since here z = (2x− 1)2 = 4xx− 4x + 1, one has

∫
zdx =

4
3
x3 − 2x2 + x;

because from this, differentiation produces 4xxdx− 4xdx+ dx = zdx. Further
differentiation yields

dz

dx
= 8x− 4,

ddz

dx2
= 8,

d3z

dx3
= 0 etc.

So the summative term sought equals

4
3
x3 − 2x2 + x + 2xx− 2x +

1
2

+
2
3
x− 1

3
± Const.,

in which the constant must remove the terms 1
2 − 1

3 , so

S (2x− 1)2 =
4
3
x3 − 1

3
x =

x

3
(2x− 1) (2x + 1) .

So if one sets x = 4, the sum of the first four terms

1 + 9 + 25 + 49 =
4
3
· 7 · 9 = 84.

[...]

132. From this general expression for the summative term, the sum for powers
of natural numbers, that we communicated in the first part (§29 and 61), but
which we could not prove at that time, follows very easily. Let us set z = xn,
so that

∫
zdx = 1

n+1xn+1, and differentiating,

dz

dx
= nxn−1,

ddz

dx2
= n (n− 1)xn−2,

d3z

dx3
= n (n− 1) (n− 2)xn−3,

d5z

dx5
= n (n− 1) (n− 2) (n− 3) (n− 4)xn−5,

d7z

dx7
= n (n− 1) · · · (n− 6)xn−7, etc.
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From this we deduce the following summative term corresponding to the general
term xn:

Sxn =
1

n + 1
xn+1 +

1
2
xn +

1
6
· n

2
xn−1 − 1

30
· n (n− 1) (n− 2)

2 · 3 · 4 xn−3

+
1
42
· n (n− 1) (n− 2) (n− 3) (n− 4)

2 · 3 · 4 · 5 · 6 xn−5

− 1
30
· n (n− 1) · · · · · · · · · (n− 6)

2 · 3 · · · 8 xn−7

+
5
66
· n (n− 1) · · · · · · · · · (n− 8)

2 · 3 · · · 10
xn−9

− 691
2730

· n (n− 1) · · · · · · · · · (n− 10)
2 · 3 · · · 12

xn−11

+
7
6
· n (n− 1) · · · · · · · · · (n− 12)

2 · 3 · · · 14
xn−13

−3617
510

· n (n− 1) · · · · · · · · · (n− 14)
2 · 3 · · · 16

xn−15

+
43867
798

· n (n− 1) · · · · · · · · · (n− 16)
2 · 3 · · · 18

xn−17

−174611
330

· n (n− 1) · · · · · · · · · (n− 18)
2 · 3 · · · 20

xn−19

+
854513

138
· n (n− 1) · · · · · · · · · (n− 20)

2 · 3 · · · 22
xn−21

−236364091
2730

· n (n− 1) · · · · · · · · · (n− 22)
2 · 3 · · · 24

xn−23

+
8553103

6
· n (n− 1) · · · · · · · · · (n− 24)

2 · 3 . . . 26
xn−25

−23749461029
870

· n (n− 1) · · · · · · · · · (n− 26)
2 · 3 · · · 28

xn−27

+
8615841276005

14322
· n (n− 1) · · · · · · · · · (n− 28)

2 · 3 · · · 30
xn−29

etc.

This expression differs from the former only in that here we have introduced
the Bernoulli numbers A, B, C, D etc., whereas above we used the numbers
α, β, γ, δ etc.; the agreement is clear. Thus here we have been able to give
the summative terms for all powers up to the thirtieth, inclusive; if we wanted
to perform this investigation via other means, lengthy and tedious calculations
would be necessary.

[...]

Part Two, Chapter 6
On the summing of progressions via infinite series

140. The general expression, that we found in the previous chapter for the
summative term of a series, whose general term corresponding to the index x
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is z, namely

Sz =
∫

zdx +
1
2
z +

Adz

1 · 2dx
− Bd3z

1 · 2 · 3 · 4dx3
+

Cd5z

1 · 2 · · · 6dx5
− etc.,

actually serves to determine the sums of series, whose general terms are integral
rational functions of the index x, because in these cases one eventually arrives
at vanishing differentials. On the other hand, if z is not such a function of x,
then the differentials continue without end, and there results an infinite series
that expresses the sum of the given series up to and including the term whose
index = x. The sum of the series, continuing without end, is thus given by
taking x = ∞, and one finds in this way another infinite series equal to the
original.

141. If one sets x = 0, the expression represented by the series must vanish,
as we already noted; and if this does not occur, one must add to or take away
from the sum a constant amount, so that this requirement is satisfied. If this is
the case, then when x = 1 one obtains the first term of the series, when x = 2
the sum of the first and second, when x = 3 the sum of the first three terms of
the series, etc. Because in these cases the sum of the first, first two, first three,
etc. terms is known, this is also the value of the infinite series expressing the
sum; and thus one is placed in a position to sum countlessly many series.

142. Since when a constant value is added to the sum, so that it vanishes
when x = 0, the true sum is then found when x is any other number, then it
is clear that the true sum must likewise be given, whenever a constant value
is added that produces the true sum in any particular case. Thus suppose it
is not obvious, when one sets x = 0, what value the sum assumes and thus
what constant must be used; one can substitute other values for x, and through
addition of a constant value obtain a complete expression for the sum. Much
will become clear from the following.

142a. Consider first the harmonic progression

1 +
1
2

+
1
3

+
1
4

+ · · ·+ 1
x

= s.

Since the general term = 1
x , we have z = 1

x , and the summative term s will

be found as follows. First one has
∫

zdx =
∫

dx
x = lx; from differentiation one

has

dz

dx
= − 1

x2
,

ddz

2dx2
=

1
x3

,
d3z

6dx3
= − 1

x4
,

d4z

24dx4
=

1
x5

,
d5z

120dx5
= − 1

x6
, etc.

From this

s = lx +
1
2x

− A

2x2
+

B

4x4
− C

6x6
+

D

8x8
− etc. + Constant.
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However, the added constant value cannot be determined from the case when
x = 0. So we set x = 1. Since then s = 1, one has

1 =
1
2
− A

2
+

B

4
− C

6
+

D

8
− etc. + Constant,

and thus the constant is

=
1
2

+
A

2
− B

4
+

C

6
− D

8
+ etc.

Consequently the summative term sought is

s = lx + 1
2x − A

2x2 + B
4x4 − C

6x6 + D
8x8 − etc.

+ 1
2 + A

2 − B
4 + C

6 − D
8 + etc.

143. Since the Bernoulli numbers A, B, C, D etc. form a diverging series, it
is not possible to really know the value of the constant here. But if we substitute
a larger number for x, and really find the sum of that many terms, the value of
the constant can be found easily. Let us set as the end x = 10; the sum of the
first ten terms

= 2, 928968253968253968,

which must equal the expression for the sum when one sets x = 10 in it, yielding

l10 +
1
20
− A

200
+

B

40000
− C

6000000
+

D

800000000
− etc. + C.

Thus if one substitutes for l10 the hyperbolic logarithm of 10, and in place of
A, B, C etc. substitutes the values found above [§122], one obtains for the
constant

C = 0, 5772156649015325,

and this number therefore expresses the sum of the series

1
2

+
A

2
− B

4
+

C

6
− D

8
+

E

10
− etc.

144. If one substitutes for x a not very large number, then the sum of the
[original] series is easy to find, and one obtains the sum

1
2x
− A

2x2
+

B

4x4
− C

6x6
+

D

8x8
− etc. = s− lx− C.

But if x is a very large number, then the sum of this infinite expression can be
found in decimal fractions. Now it is clear to begin with that if the [original]
series continues infinitely, the sum will have infinite magnitude, because as
x = ∞, also lx grows to infinity. But in order nonetheless to be able to give the
sum of any number of terms more easily, we express the values of the letters A,
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B, C etc. in decimal fractions.

A = 0, 1666666666666
B = 0, 0333333333333
C = 0, 0238095238095
D = 0, 0333333333333
E = 0, 0757575757575
F = 0, 2531135531135
G = 1, 1666666666666
H = 7, 0921568627451 etc.,

and so

A

2
= 0, 0833333333333

B

4
= 0, 0083333333333

C

6
= 0, 0039682539682

D

8
= 0, 0041666666666

E

10
= 0, 0075757575757

F

12
= 0, 0210927960928

G

14
= 0, 0833333333333

H

16
= 0, 4432598039216 etc.

First example.
Find the sum of one thousand terms of the series 1 + 1

2 + 1
3 + 1

4 + 1
5+ etc.
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Set x = 1000, and because

l10 = 2, 3025850929940456840,
one has lx = 6, 9077552789821

Const. = 0, 5772156649015
1
2x

= 0, 0005000000000

7, 4854709438836

subtr.
A

2xx
= 0, 0000000833333

7, 4854708605503

add
B

4x4
= 0, 0000000000000,

thus 7, 4854708605503

is the desired sum of a thousand terms, which is still not seven and a half.
[...]

148. After considering the harmonic series we wish to turn to examining the
series of reciprocals of the squares, letting

s = 1 +
1
4

+
1
9

+
1
16

+ · · ·+ 1
xx

.

Since the general term of this series is z = 1
xx , then

∫
zdx = 1

x , the differentials
of z are

dz

2dx
= − 1

x3
,

ddz

2 · 3dx2
=

1
x4

,
d3z

2 · 3 · 4dx3
= − 1

x5
etc.,

and the sum is

s = C − 1
x

+
1

2xx
− A

x3
+

B

x5
− C

x7
+

D

x9
− E

x11
+ etc.,

where the added constant C is determined from one case in which the sum is
known. We therefore wish to set x = 1. Since then s = 1, one has

C = 1 + 1− 1
2

+ A−B + C−D + E− etc.,

but this series alone does not give the value of C, since it diverges strongly.
Above [§125] we demonstrated that the sum of the series to infinity is = ππ

6 ,
and therefore setting x = ∞, and s = ππ

6 , we have C = ππ
6 , because then all

other terms vanish. Thus it follows that

1 + 1− 1
2

+ A−B + C−D + E−etc. =
ππ

6
.

149. If the sum of this series were not known, then one would need to
determine the value of the constant C from another case, in which the sum
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were actually found. To this aim we set x = 10 and actually add up ten terms,
obtaining

s = 1, 549767731166540690.

Further, add 1
x = 0, 1

subtr. 1
2xx = 0, 005

1, 644767731166540690

add A
x3 = 0, 000166666666666666

1, 644934397833207356

subtr. B
x5 = 0, 000000333333333333

1, 644934064499874023

add C
x7 = 0, 000000002380952381

1, 644934066880826404

subtr. D
x9 = 0, 000000000033333333

1, 644934066847493071

add E
x11 = 0, 000000000000757575

1, 644934066848250646

subtr. F
x13 = 0, 000000000000025311

1, 644934066848225335

add G
x15 = 0, 000000000000001166

subtr. H
x17 = 71

1, 644934066848226430 = C.

This number is likewise the value of the expression ππ
6 , as one can find by

calculation from the known value of π. From this it is clear that, although the
series A, B, C, etc. diverges, it nevertheless produces a true sum. [...]

In §150–153 Euler explores possible formulas for exact sums of the infinite
series of reciprocal odd powers of the natural numbers, similar to those he
has already found for the sums of reciprocal even powers in terms of the
Bernoulli numbers and π. Using his summation formula he produces highly
accurate decimal approximations for the sums of reciprocal odd powers all
the way through the fifteenth power, hoping to see a pattern analogous to
the even powers, namely simple fractions times the relevant power of π. He
is disappointed, however, not to find that they behave similarly to the even
powers.

Then in §154–156 Euler uses a sum and the inverse tangent and cotangent
functions to approximate π to seventeen decimal places with his summation
formula, and remarks that it is amazing that one can approximate π so
accurately with such an easy calculation.
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157. Now we want to use for z transcendental functions of x, and take
z = lx for summing hyperbolic logarithms, from which the ordinary can easily
be recovered, so that

s = l1 + l2 + l3 + l4 + · · ·+ lx.

Because z = lx, ∫
zdx = xlx− x,

since its differential is dxlx. Then

dz

dx
=

1
x

,
ddz

dx2
= − 1

x2
,

d3z

1 · 2dx3
=

1
x3

,
d4z

1 · 2 · 3dx4
= − 1

x4
,

d5z

1 · 2 · 3 · 4dx5
=

1
x5

, etc.

One concludes that

s = xlx− x +
1
2
lx +

A

1 · 2x
− B

3 · 4x3
+

C

5 · 6x5
− D

7 · 8x7
+ etc. + Const.

But for this constant one finds, when one sets x = 1, because then s = l1 = 0,

C = 1− A

1 · 2 +
B

3 · 4 −
C

5 · 6 +
D

7 · 8 − etc.,

a series that, due to its great divergence, is quite unsuitable even for determining
the approximate value of C.

158. Nevertheless we can not only approximate the correct value of C, but
can obtain it exactly, by considering Wallis’s expression for π provided in the
Introductio [1, vol. 1, chap. 11]. This expression is

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 · 10 · 10 · 12 · etc.
1 · 3 · 3 · 5 · 5 · 7 · 7 · 9 · 9 · 11 · 11 · etc.

Taking logarithms, one obtains from this

lπ − l2 = 2l2 + 2l4 + 2l6 + 2l8 + 2l10 + l12 + etc.

−l1− 2l3− 2l5− 2l7− 2l9− 2l11− etc.

Setting x = ∞ in the assumed series, we have

l1 + l2 + l3 + l4 + · · ·+ lx = C +
(
x + 1

2

)
lx− x,

thus l1 + l2 + l3 + l4 + · · ·+ l2x = C +
(
2x + 1

2

)
l2x− 2x

and l2 + l4 + l6 + l8 + · · ·+ l2x = C +
(
x + 1

2

)
lx + xl2− x,

and therefore l1 + l3 + l5 + l7 + · · ·+ l (2x− 1) = xlx +
(
x + 1

2

)
l2− x.

Thus because

lπ
2 = 2l2 + 2l4 + 2l6 + · · · + 2l2x− l2x

− 2l1− 2l3− 2l5− · · · − 2l (2x− 1) ,
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letting x = ∞ yields

l
π

2
= 2C + (2x + 1) lx + 2xl2− 2x− l2− lx− 2xlx− (2x + 1) l2 + 2x,

and therefore

l
π

2
= 2C − 2l2, thus 2C = l2πand C =

1
2
l2π,

yielding the decimal fraction representation

C = 0, 9189385332046727417803297,

thus simultaneously the sum of the series

1− A

1 · 2 +
B

3 · 4 −
C

5 · 6 +
D

7 · 8 −
E

9 · 10
+ etc. =

1
2
l2π.

159. Since we now know the constant C = 1
2 l2π, one can exhibit the sum of

any number of logarithms from the series l1 + l2 + l3+ etc. If one sets

s = l1 + l2 + l3 + l4 + · · ·+ lx,

then

s =
1
2
l2π +

(
x +

1
2

)
lx− x +

A

1 · 2x
− B

3 · 4x3
+

C

5 · 6x5
− D

7 · 8x7
+ etc.

if the proposed logarithms are hyperbolic; if however the proposed logarithms
are common, then one must take common logarithms also in the terms 1

2 l2π +
(x + 1

2)lx for l2π and lx, and multiply the remaining terms

−x +
A

1 · 2x
− B

3 · 4x3
+ etc.

of the series by 0, 434294481903251827 = n. In this case the common loga-
rithms are

lπ = 0, 497149872694133854351268
l2 = 0, 301029995663981195213738

l2π = 0, 798179868358115049565006
1
2
l2π = 0, 399089934179057524782503.

Example.
Find the sum of the first thousand common logarithms

s = l1 + l2 + l3 + · · ·+ l1000.
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So x = 1000, and

lx = 3, 0000000000000,

and thus xlx = 3000, 0000000000000
1
2 lx = 1, 5000000000000

1
2 l2π = 0, 3990899341790

3001, 8990899341790

subtr. nx = 434, 2944819032518
2567, 6046080309272.

Then
nA
1·2x = 0, 0000361912068

subtr. nB
3·4x3 = 0, 0000000000012

0, 0000361912056

add 2567, 6046080309272
the sum sought s = 2567, 6046442221328.

Now because s is the logarithm of a product of numbers

1 · 2 · 3 · 4 · 5 · 6 · · · 1000,

it is clear that this product, if one actually multiplies it out, consists of 2568
figures, beginning with the figures 4023872, with 2561 subsequent figures.

160. By means of this summation of logarithms, one can approximate the
product of any number of factors, that progress in the order of the natural
numbers. This can be especially helpful for the problem of finding the middle or
largest coefficient of any power in the binomial (a+ b)m, where one notes that,
when m is an odd number, one always has two equal middle coefficients, which
taken together produce the middle coefficient of the next even power. Thus
since the largest coefficient of any even power is twice as large as the middle
coefficient of the immediately preceding odd power, it suffices to determine the
middle largest coefficient of an even power. Thus we have m = 2n with middle
coefficient expressed as

2n (2n− 1) (2n− 2) (2n− 3) · · · (n + 1)
1 · 2 · 3 · 4 · · ·n .

Setting this = u, one has

u =
1 · 2 · 3 · 4 · 5 · · · 2n

(1 · 2 · 3 · 4 · · ·n)2
,

and taking logarithms

lu = l1 + l2 + l3 + l4 + l5 + · · · l2n

−2l1− 2l2− 2l3− 2l4− 2l5− · · · − 2ln.
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161. The sum of hyperbolic logarithms is

l1 + l2 + l3 + l4 + · · ·+ l2n =
1
2
l2π +

(
2n +

1
2

)
ln +

(
2n +

1
2

)
l2− 2n

+
A

1 · 2 · 2n
− B

3 · 4 · 23n3
+

C

5 · 6 · 25n5
− etc.

and

2l1 + 2l2 + 2l3 + 2l4 + · · ·+ 2ln

= l2π + (2n + 1) ln− 2n +
2A

1 · 2n
− 2B

3 · 4n3
+

2C

5 · 6n5
− etc.

Subtracting this expression from the former yields

lu = −1
2
lπ − 1

2
ln + 2nl2 +

A

1 · 2 · 2n
− B

3 · 4 · 23n3
+

C

5 · 6 · 25n5
− etc.

− 2A

1 · 2n
+

2B

3 · 4n3
− 2C

5 · 6n5
+ etc.,

and collecting terms in pairs

lu = l
22n

√
nπ

− 3A

1 · 2 · 2n
+

15B
3 · 4 · 23n3

− 63C
5 · 6 · 25n5

+
255D

7 · 8 · 27n7
− etc.

One has

3A

1 · 2 · 22n2
− 15B

3 · 4 · 24n4
+

63C
5 · 6 · 26n6

− 255D
7 · 8 · 28n8

+ etc.

= l

(
1 +

A

22n2
+

B

24n4
+

C

26n6
+

D

28n8
+ etc.

)
,

so that

lu = l
22n

√
nπ

− 2nl

(
1 +

A

22n2
+

B

24n4
+

C

26n6
+ etc.

)

and thus

u =
22n

(
1 + A

22n2 + B
24n4 + C

26n6 + etc.
)2n√

nπ
.
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Setting 2n = m,

l(1 + A
22n2 + B

24n4 + C
26n6 + D

28n8 + etc.)

= A
m2 + B

m4 + C
m6 + D

m8 + E
m10 + etc.

− A2

2m4 − AB
m6 − AC

m8 − AD
m10 − etc.

− BB
2m8 − BC

m10 − etc.

+ A3

3m6 + A2B
m8 + A2C

m10 + etc.

+ AB2

m10 + etc.

− A4

4m8 − A3B
m10 − etc.

+ A5

5m10 + etc.;

and because this expression must equal

3A

1 · 2m2
− 15B

3 · 4m4
+

63C
5 · 6m6

− 255D

7 · 8m8
+ etc.,

one has

A =
3A

1 · 2
B =

A2

2
− 15B

3 · 4
C = AB − 1

3
A3 +

63C

5 · 6
D = AC +

1
2
B2 −A2B +

1
4
A4 − 255D

7 · 8
E = AD + BC −A2C −AB2 + A3B − 1

5
A5 +

1023E

9 · 10
etc.

162. Now since A = 1
6 , B = 1

30 , C = 1
42 , D = 1

30 , E = 5
66 , one has

A =
1
4
, B = − 1

96
, C =

27
640

, D = − 90031
211 · 32 · 5 · 7 etc.

Consequently

u =
22n

(
1 + 1

24n2 − 1
29·3n4 + 27

213·5n6 − 90031
219·32·5·7n8 + etc.

)2n√
nπ

or

u =
22n

(
1− 1

24n2 + 7
29·3n4 − 121

213·3·5n6 + 107489
219·32·5·7n8 − etc.

)2n

√
nπ

,
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or, if one actually takes the power of the series, approximately

u =
22n

√
nπ

(
1 + 1

4n + 1
32n2 − 1

128n3 − 5
16·128n4 + etc.

) .

Thus the middle term in (1 + 1)2n is to the sum 22n of all the terms as

1is to
√

nπ

(
1 +

1
4n

+
1

32n2
− 1

128n3
− 1

16 · 128n4
+ etc.

)
;

or, if one abbreviates 4n = ν, as

1is to
√

nπ

(
1 +

1
ν

+
1

2ν2
− 1

2ν3
− 5

8ν4
+

23
8ν5

+
53

16ν6
− etc.

)
.

[...]

Second Example
Find the ratio of the middle term of the binomial (1 + 1)100 to the sum 2100

of all the terms.

For this we wish to use the formula we found first,

lu = l
22n

√
nπ

− 3A

1 · 2 · 2n
+

15B

3 · 4 · 23n3
− 63C

5 · 6 · 25n5
+ etc.,

from which, setting 2n = m, in order to obtain the power (1 + 1)m, and after
substituting the values of the letters A, B, C, D etc., one has

lu = l
2m

√1
2mπ

− 1
4m

+
1

24m3
− 1

20m5
+

17
112m7

− 31
36m9

+
691

88m11
− etc.

Since the logarithms here are hyperbolic, one multiplies by

k = 0, 434294481903251,

in order to change to tables, yielding

lu = l
2m

√1
2mπ

− k

4m
+

k

24m3
− k

20m5
+

17k

112m7
− 31k

36m9
+ etc.,

Now since u is the middle coefficient, the ratio sought is 2m : u, and

l
2m

u
= l
√1

2
mπ +

k

4m
− k

24m3
+

k

20m5
− 17k

112m7
+

31k

36m9
− 691k

88m11
+ etc.

Now, since the exponent m = 100,

k

m
= 0, 0043429448,

k

m3
= 0, 0000004343,

k

m5
= 0, 0000000000,
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yielding
k

4m = 0, 0010857362
k

24m3 = 0, 0000000181

0, 0010857181 .

Further lπ = 0, 4971498726

l 1
2m = 1, 6989700043

l 1
2mπ = 2, 1961198769

l
√1

2mπ = 1, 0980599384
k

4m − k
24m3 + etc. = 0, 0010857181

1, 0991456565 = l 2100

u .

Thus 2100

u = 12, 56451, and the middle term in the expanded power (1 + 1)m

is to the sum of all the terms 2100 as 1 is to 12, 56451.
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[3] L. Euler, Vollständige Anleitung zur Differenzial-Rechnung (transl. Johann Michelsen),

Berlin, 1790, reprint of the 1798 edition by LTR-Verlag, Wiesbaden, 1981.
[4] L. Euler, Foundations of differential calculus (transl. John D. Blanton), Springer Ver-

lag, New York, 2000.


